Classification of Partial Discharge Images Using Deep Convolutional Neural Networks
نویسندگان
چکیده
منابع مشابه
Classification of Time-Series Images Using Deep Convolutional Neural Networks
Convolutional Neural Networks (CNN) has achieved a great success in image recognition task by automatically learning a hierarchical feature representation from raw data. While the majority of Time-Series Classification (TSC) literature is focused on 1D signals, this paper uses Recurrence Plots (RP) to transform time-series into 2D texture images and then take advantage of the deep CNN classifie...
متن کاملGas Classification Using Deep Convolutional Neural Networks
In this work, we propose a novel Deep Convolutional Neural Network (DCNN) tailored for gas classification. Inspired by the great success of DCNN in the field of computer vision, we designed a DCNN with up to 38 layers. In general, the proposed gas neural network, named GasNet, consists of: six convolutional blocks, each block consist of six layers; a pooling layer; and a fully-connected layer. ...
متن کاملObject Classification using Deep Convolutional Neural Networks
The objective of this research project is to explore the impact on performance by varying architectures of deep neural networks. Deep neural networks have resurged in interest by researchers when, in 2012, Krizhevsky et al. submitted a deep convolutional neural network to the ILSVRC (ImageNet Large Scale Visual Recognition Challenge) and achieved significantly-higher results than the entire com...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملDeep Convolutional Neural Networks and Noisy Images
The presence of noise represent a relevant issue in image feature extraction and classification. In deep learning, representation is learned directly from the data and, therefore, the classification model is influenced by the quality of the input. However, the ability of deep convolutional neural networks to deal with images that have a different quality when compare to those used to train the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energies
سال: 2020
ISSN: 1996-1073
DOI: 10.3390/en13205496